

THE MERCY UNIVERSITY OF NEW JERSEY

Anaerobic Threshold Is Not Different Among Young and Healthy Adults Regardless of Gender, Athletic Status, and Sport Type

Jessica Rogers

Mentor: Dr. Vincent Chen

Department of Integrative Health & Exercise Science

ABSTRACT

Anaerobic threshold (AT), occurring while Respiratory Exchange Ratio (RER) \geq 1, is detected when an individual's energy metabolism shifts from aerobic to anaerobic, indicating an individual's ability to sustain a prolonged exercise before lactate accumulation. While $\dot{V}O_2$ max and agility have been shown to be different in gender, athletic status, and sport types, AT has not been studied between these groups.

PURPOSE: The purpose of this study is to investigate the differences of AT in different gender, athletic status, and sport type. The differences in VO₂max and agility will also be examined among these groups.

METHODS: Seventy-five healthy, young men (N=52) and women (N=21) performed an agility T-test and a $\dot{V}O_2$ max test. AT was recorded during the $\dot{V}O_2$ max test. The participants were categorized by gender, athlete status, and sport types (endurance and power).

RESULTS: There was no significant difference of AT in gender, athlete status, and sport types. $\dot{V}O_2$ max is higher in males (51.60±1.17) than females (42.34±1.64 mL•kg⁻¹•min⁻¹) (P<0.001), athletes (50.27±3.03) than non-athletes (38.08±1.04 mL•kg⁻¹•min⁻¹) (P<0.001), and endurance (51.42±1.13) than power sports (46.44±2.25 mL•kg⁻¹•min⁻¹) (P=0.042). Agility is better in males (10.06 ± 0.21) than females (12.21±0.25 sec) (P<0.001), and athletes (10.35±0.17 sec) than non-athletes (12.95±0.69 sec) (P=0.005).

CONCLUSION: The result of no difference in AT between these groups implies that healthy, young individuals have a similar ability to sustain a prolonged exercise before lactate accumulation regardless of their gender, athletic status, and sport type.

PURPOSE

The purpose of this study is to investigate the differences of AT in different gender, athletic status, and sport type among young men and women. The difference in $\dot{V}O_2$ max and agility will also be examined among these groups.

BACKGROUND

The maximal oxygen consumption (VO₂max) is a good indicator of how well one's cardiovascular fitness and aerobic endurance are. Agility requires the integration movements involving balance, coordination, speed, reflexes, and power. The quicker a participant can get through the agility test, the better the agility is. Anaerobic threshold (AT), occurring while Respiratory Exchange Ratio (RER) ≥ 1 and expressed by the percentage of maximal oxygen consumption rate (%VO₂max), is detected when an individual's energy metabolism switches from aerobic to anaerobic. Being considered a good measure for deciding exercise intensity for endurance training, AT indicates an individual's ability to sustain a prolonged exercise before lactate accumulation. While VO₂max and agility have been shown to be different in gender, athletic status, and sport types, AT has not been studied to identify the difference between these groups.

METHODS

SUBJECTS

- 75 Participants
- 54 Males
- 21 Females
- 66 Athletes
 - 51 Endurance-Sport Athletes
 - 15 Power-Sport Athletes
- 9 Non-Athletes
- Age: 18-23 yrs
- **Height**: 173.36 ± 1.11 cm
- Weight: 75.18 ± 1.25 Kg
- Groups: Males vs. Females, Athletes vs. Non-Athletes, Endurance vs. Power Sports

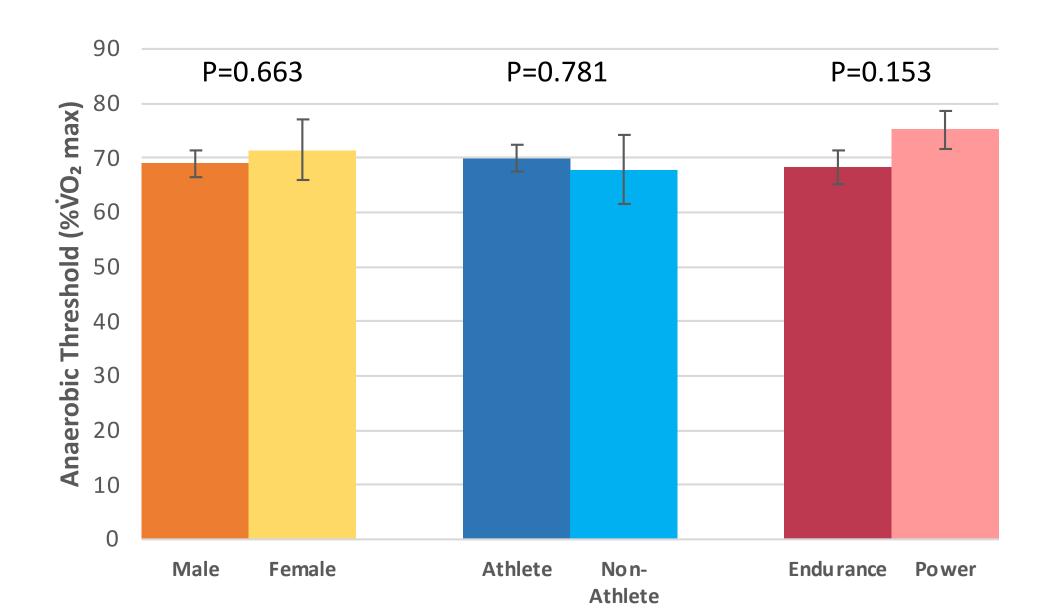
TESTING & MEASUREMENTS

- VO₂max
- Bruce Protocol
- Grade (slope) and speed increase every 3 minutes
- Perform until exhaustion
- Agility T-Test
- forward, lateral, and backward movements at maximum velocity
- Anaerobic Threshold
- Anaerobic Threshold = $\frac{\dot{V}O2 \text{ when RER} \ge 1}{\dot{V}O2 \text{max}}$
- Respiratory Exchange Ratio (RER)
- RER = $\frac{VCO_2}{\dot{V}O_2}$
- Obtained during the VO2max test

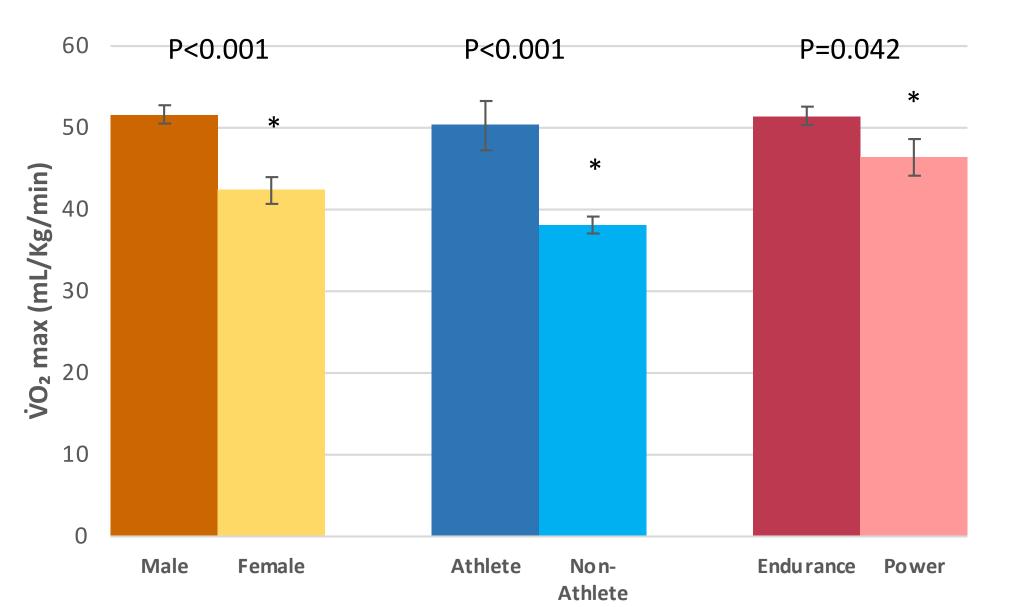
STATISTICS

- Independent Sample T-Test
- IBM SPSS 25

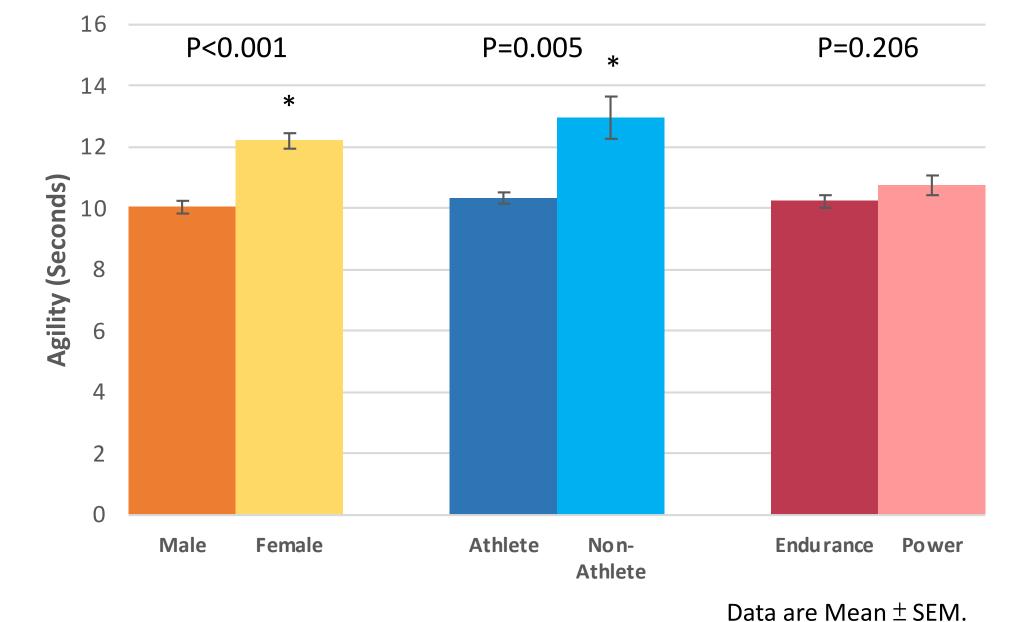
CONCLUSION


Our results reflect the collective understanding that $\dot{V}O_2$ max is higher in males than females, athletes than non-athletes, and endurance athletes than power athletes. While results of agility follows the tendency of $\dot{V}O_2$ max in these groups, it is not different between power and endurance athletes, possibly due to the superb muscular fitness and cognitive function in our college-age athlete participants. The result of no difference in AT between these groups implies that healthy, young individuals have a similar ability to sustain a prolonged exercise before lactate accumulation regardless of their gender, athletic status, and sport type.

ACKNOWLEDGEMENTS


• John Esposito, Kylie Jones, Patrick Morris

RESULTS


Comparing Anaerobic Threshold between Groups

Comparing VO₂max between Groups

Comparing Agility between Groups

Data are Mean ± SEM